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Abstract 

The transfer from short-term memory, which persists only for a few hours, to long-term memory 

is assumed to begin with a process called synaptic consolidation. Drawing from the hypothesis 

that memories are mainly stored by the strength of synaptic connections, synaptic consolidation 

means that a memory representation is consolidated by the stabilization of previous synaptic 

changes. The major candidate mechanism assumed to underlie this consolidation at the cellular 

level is synaptic tagging and capture (STC). While previous studies have provided first pieces 

of evidence for this assumption considering simple feed-forward networks, the recurrent 

connectivity of hippocampal or cortical neuronal networks plays a particularly important role in 

memory function, as it enables pattern completion and temporally prolonged sequences of 

activity. Such dynamics mainly arise from so-called cell assemblies, which are groups of 

neurons with particularly strong synaptic connections. Thus, while it has been proposed that 

STC implements synaptic consolidation, the link between the physiological mechanisms of STC 

and the cognitive functions of long-term memory remains unclear. On timescales of minutes to 

hours (i.e., on the timescales of STC) these functions include memory improvement, selective 

consolidation, retroactive interference, and priming of a particular memory.  

Here, we first review findings from different computational studies of STC, and we and present 

our computational model of STC-based synaptic consolidation in recurrent networks of spiking 

neurons. Then, we summarize the main results of our previous studies that suggest that STC 

can robustly implement the cognitive memory functions mentioned above. To this end we 

modeled the formation, consolidation, and improvement of memories represented by cell 

assemblies. Furthermore, we have shown that when the synthesis of plasticity-related proteins 

depends on neuromodulation, the level of neuromodulator can retroactively control the storing 

of different types of information. Moreover, we have demonstrated that emergent effects arise 

from the influence of STC on the interaction of multiple memory representations in different 

organizational paradigms. Through these findings, we provide a mechanistic explanation and 

contribute further evidence that STC plays an important role for various phenomena related to 
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long-term memory. Finally, we discuss future steps for enabling computational models to predict 

the outcome of STC-related experiments in greater detail. 
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X.1 Introduction 

Synaptic tagging-and-capture (STC) involves a complex web of processes happening at 

different locations in a neuron. Computational models help to unravel this complexity and to link 

the cellular STC processes to behaviorally relevant dynamics on the level of neuronal networks. 

Up to now, several computational models have been developed to account for early- and late-

phase synaptic plasticity, resembling experimental findings on STC (Clopath et al., 2008; 

Barrett et al., 2009; Päpper et al., 2011; Smolen et al., 2012; O’Donnell & Sejnowski, 2014; 

Ziegler et al., 2015; Li et al., 2016; Kastellakis et al., 2016; Luboeinski & Tetzlaff, 2021; Ding et 

al., 2022). These models vary, however, largely in their degree of detail describing the 

underlying biological processes. While the earlier models have provided a simplified description 

of STC processes to account for late-phase potentiation and depression in a population of 

synapses (Clopath et al., 2008; Barrett et al., 2009; Päpper et al., 2011; O’Donnell & Sejnowski, 

2014), the up to now most detailed mathematical description of STC has been provided by 

Smolen et al. (2012). The latter model is, however, not applicable to large-scale network 

simulations due to its computational complexity. Instead, models with an intermediate level of 

detail (such as Ziegler et al., 2015; Kastellakis et al., 2016; Luboeinski & Tetzlaff, 2021) are 

usually more suitable for network simulations. In this chapter, we will present and discuss the 

different variants of STC models, including our recurrent network model that has enabled us to 

link STC processes with a variety of behaviorally relevant findings regarding long-term memory 

(see Luboeinski & Tetzlaff, 2021, 2022; Lehr et al., 2022). Moreover, we will discuss possible 

extensions to our model, relating to existing and future findings.  

In the first few hours after an experience is encoded as a new memory, the transition to long-

term memory mainly occurs through synaptic consolidation (also called cellular or initial 

consolidation; Dudai, 2004; Okuda et al., 2020). This refers to the stabilization of the memory 

representation in the same neuronal circuit(s) in which it was encoded. Thus, in principle, 

synaptic memory consolidation might be explained via deployment of any of the aforementioned 

models of STC in a recurrent neural network. Remarkably, this explanatory power of STC 

models has been taken for granted for many years without any conclusive proof (cf. Martin, 

2000; Redondo & Morris, 2011). This was changed by Päpper et al. (2011), who demonstrated 

memory consolidation with a simple STC model in recurrent neural networks, and by other 



studies that investigated the impact of relatively detailed STC models in feed-forward networks 

(Ziegler et al., 2015; Kastellakis et al., 2016). To our knowledge, our own study (Luboeinski & 

Tetzlaff, 2021) was then the first to demonstrate the formation and synaptic consolidation of 

memory representations under biologically realistic dynamics, including spike-driven calcium-

based induction of synaptic plasticity and a neuronal pool of plasticity-related proteins, in 

recurrent neural networks. 

The main goal of this chapter is to convey insights into the theoretical investigation of the impact 

of STC at the network level. The focus is on networks with recurrent connectivity, which have 

been shown to be critical for many aspects of brain functionality (Treves & Rolls, 1992; Martin 

et al., 2000; Palm et al., 2014; Guzman et al., 2016; Gastaldi et al., 2021). The chapter is 

structured as follows: in the first section after this introduction (section X.2), we provide a 

concise review of the existing models of STC along with their underlying assumptions, as well 

as network models that employ STC mechanisms to account for synaptic memory consolidation. 

Then, in section X.3, we present our own network model and the experimental protocols that 

we have considered. This is followed by a section in which we demonstrate the capability of 

this model to explain synaptic memory consolidation in recurrent spiking neural networks, as 

well as to enable retroactive modification of stored information (section X.4). After that, we 

present results that show how STC can influence the dynamics of multiple memory 

representations to account for their organization and priming (section X.5). Finally, we discuss 

future perspectives with suggestions for the enhancement of STC models (section X.6), and 

we provide a conclusion for the chapter (section X.7).  

 

X.2 Existing computational models 

X.2.1 Models of STC describing single-synapse dynamics 

In this section, we will discuss computational models of STC (Päpper et al., 2011; Smolen et 

al., 2012; O’Donnell & Sejnowski, 2014; Li et al., 2016; Kastellakis et al., 2016; Ding et al., 

2022). We will pay particular attention to three of them (Clopath et al., 2008; Barrett et al., 2009; 

Ziegler et al., 2015), as these have been seminal milestones in STC modeling.  Furthermore, 

we will not elaborate on the STC model by Li et al. (2016) here because our STC model is 

essentially based on it, and details are given in sections X.2.2 and X.3. 

All of the models being discussed are consistent with typical experimental results obtained from 

the stimulation of synaptic populations in hippocampal slices (see, for example, Frey & Morris 

1997; Reymann & Frey 2007). This includes that the synaptic tag and early-phase long-term 

potentiation/depression (E-LTP/D) decay on average after 1 to 2 hours, while late-phase 

changes (L-LTP/D) are maintained for many hours.  Besides this, all of the models consider a 



neuron-wide, unlimited pool of plasticity-related proteins (PRPs), neglecting possible 

competition between synapses for PRPs (also see discussion in section X.6). 

Clopath et al. (2008) provided one of the first computational models of STC. The focus of this 

model was to derive the basic mechanisms being required to explain STC. The analyses 

indicate that three mechanisms are required, namely early-phase weight/synaptic tag, PRP 

dynamics, and late-phase weight. The description of the synaptic tag has been linked to the 

state of the early-phase weight, comprising three possible Markov states: neutral, up, and down. 

The non-neutral states directly correspond to tags, such that E-LTP (up) or E-LTD (down) 

always entail the setting of a tag. Transitions between states are determined by triplet spike 

timing-dependent plasticity (see Pfister & Gerstner, 2006) and an exponential decay. The 

production of PRPs is triggered by a sufficient amount of early-phase weight modifications (cf. 

Frey & Morris, 1997; Redondo & Morris, 2011) and depends on a dopamine-dependent protein 

synthesis threshold (cf. Frey et al., 1990; Sajikumar & Frey, 2004a; Lemon & Manahan-

Vaughan, 2006; Navakkode et al., 2007; Mather et al., 2016; Shetty et al., 2016), which has 

been kept constant. The concentration of PRPs decays exponentially on a timescale of hours. 

Together with the synaptic tags, the amount of PRPs enables and controls L-LTP and L-LTD. 

The late-phase weight is modeled by a continuous variable. It may be important to note that 

these basic mechanisms have become part of later computational models of STC, including 

our own (cf. section X.3). 

Barrett et al. (2009) provided a model of STC that exhibits some differences to Clopath et al. 

(2008). The model assumes a synapse to be in one of six Markov states: E-LTP/D with or 

without tag, and L-LTP/D. Thus, the model includes the possibility that early-phase plasticity 

may occur without immediate tag setting, which enables a partial dissociation between early-

phase plasticity and tag as observed experimentally (cf. Redondo & Morris, 2011). The model 

also covers depotentiation, meaning that LTP can be undone through an LTD-inducing stimulus 

applied after the initial LTP-inducing stimulus, which is consistent with experiments (Sajikumar 

& Frey, 2004a,b). If the temporal distance between both stimuli is too large, however, the model 

precludes depotentiation because it does not allow synapses that have already reached the 

tagged E-LTP state to undergo induced transitions to basal E-LTP. This is ambivalent with 

respect to the experimental results of Sajikumar & Frey (2004b), showing that after some 

minutes, the tag cannot be reset anymore while depotentiation of E-LTP is still possible. Besides 

that, the model by Barrett et al. (2009) does not describe how pre- and postsynaptic spiking 

activity induce plasticity – although, for example, findings by Fonseca et al. (2006a) have shown 

that differential activity is critical for the decay of synaptic weights caused by protein synthesis 

inhibition. This issue has, however, been resolved by Kastner et al. (2016) by adding an activity-

dependent term to the model. 

Based on the two models discussed above (Clopath et al., 2008; Barrett et al., 2009), Ziegler 

et al. (2015) developed a more detailed model which provides potential explanations for further 



experimental findings such as slow-onset potentiation and different types of depotentiation (cf. 

Table 2 in Ziegler et al., 2015). The model comprises three state variables for synaptic weight, 

tagging state, and state of the postsynaptic scaffold. Early- and late-phase dynamics are 

modeled through the interaction of these variables. Namely, there is a mutual influence between 

the tagging state and the synaptic weight as well as between the tagging state and the scaffold, 

but no direct interaction between weight and scaffold. The mutual dependencies are regulated 

by write protection mechanisms, implemented by two “gating” variables. The first gating variable 

is a synapse-specific quantity driven by external stimulation. The second gating variable is the 

amount of plasticity-related proteins or products (PRPs), depending on dopamine concentration. 

This relates to the experimentally observed relationship between dopamine release and late-

phase plasticity (Frey et al., 1990; Sajikumar & Frey, 2004a; Lisman & Grace, 2005; Reymann 

& Frey 2007; Lisman et al. 2011). Note that this gating variable is neuron-specific (the model 

assumes dopamine release and the amount of proteins to affect all incoming synapses of one 

neuron equally). Different to Clopath et al. (2008) and others (also see Lehr et al., 2022), the 

model simplifies the PRP dynamic by assuming that it depends only on the dopamine 

concentration and not on the early-phase weight. While all state variables (weight, tag, scaffold) 

take continuous values, their effective dynamics are bistable. This seems reasonable with 

respect to the synaptic tag (Bhalla & Iyengar, 1999; Lisman & Zhabotinsky, 2001; Redondo & 

Morris, 2011; Smolen et al., 2014), whereas bistable early- and late-phase weights seem 

biologically questionable (cf. Barbour et al., 2007; Buzsáki & Mizuseki, 2014). To explain the 

dissociation between early-phase plasticity and tag (Ramachandran & Frey, 2009; Redondo et 

al., 2010; Redondo & Morris, 2011; Okuda et al., 2020) as well as tag resetting experiments 

(Sajikumar & Frey, 2004b), the authors found evidence that all three state variables and the two 

gating variables were necessary. The interplay between these variables also enables the model 

to reproduce so-called slow-onset LTP, which is a special form of late-phase plasticity elicited 

by the application of dopamine receptor agonists (Navakkode et al., 2007; Navakkode, 2015). 

Thus, for example, a state variable for the tag might be a useful extension for any model of STC 

(also see discussion in section X.6). To describe the induction of synaptic plasticity and to adapt 

the synaptic weight, the model uses Triplet-STDP (Pfister & Gerstner, 2006), which 

phenomenologically accounts for spike timing but does not consider firing-rate effects (cf. 

Sjöström et al., 2001) or calcium dynamics (cf. Shouval et al., 2002; Graupner & Brunel, 2012). 

For the dynamic of the neuronal membrane potential, the adaptive integrate-and-fire (AIF) 

model was employed, which describes neurons without spatial extent but with biologically 

plausible firing properties. Note that beyond the single-synapse level, Ziegler et al. (2015) 

targeted in their study also phenomena on the behavioral level, which we will discuss in 

subsection X.2.2.  

In a recent study by Ding et al. (2022), the authors set out to develop a “simplified” STC model. 

In fact, it has about the same complexity as the model by Ziegler et al. (2015) and as the one 



that we will present here (Luboeinski & Tetzlaff, 2021). The model by Ding et al. (2022) is based 

on calcium-driven early-phase and tag dynamics, drawing from Kastellakis et al. (2016). It 

further features a PRP dynamic that is modeled with exponential rise and decay depending on 

the calcium concentration, and it can be compartmentalized to account for the influence of 

dendritic morphologies (cf. discussion in section X.6). Besides that, the model includes 

presynaptic plasticity (cf. Mongillo et al., 2008), which distinguishes it from the other models 

discussed here. Similar to earlier studies, the authors reproduce the outcome of typical single- 

and two-pathway LTP/LTD experiments, finding that the addition of presynaptic plasticity does 

not make a significant difference. 

Different to the other models described here, the computational model by Smolen et al. (2012) 

considers biochemical details such as specific enzymatic pathways for LTP and LTD. Thereby, 

the model by Smolen et al. (2012) provides important insights into the molecular dynamics 

underlying STC. Nevertheless, due to high computational cost, it is not easy to employ such a 

detailed model for investigations at the network level. Since simple and medium-detailed 

models as the ones discussed here are more tractable, these play a more important role for the 

computational investigation of the influence of STC mechanisms on the network and, thus, on 

the behavioral level.  

O’Donnell & Sejnowski (2014) developed a simple model of STC to investigate the interaction 

of weak and strong stimuli on the dendritic and circuit level in the presence of local PRP 

dynamics (more details will be discussed in the next subsection X.2.2). They used an 

exponential decay function for the synaptic tag and an alpha function to describe the dynamic 

of PRPs, triggered by strong stimulation. For neuronal activity, they employed a binary model, 

assuming activity if the input is above a certain threshold and no activity otherwise. The model 

has greatly advanced the understanding of the plasticity-related interaction between synapses, 

however, due to its lack of detailed dynamics for the induction of synaptic plasticity and neuronal 

activity, it is not well-suited to explain specific experimental findings as obtained from typical 

STC-inducing protocols (cf. Sajikumar & Frey, 2004b, 2005). 

Kastellakis et al. (2016) focused on network dynamics to model behavioral tagging, which will 

be discussed in the next subsection X.2.2. Nevertheless, the synaptic and neuronal properties 

of the model shall be mentioned here. Kastellakis et al. (2016) use integrate-and-fire neurons 

including dendritic voltage integration. Crucially, they also introduced localized PRP synthesis 

to investigate different paradigms of dendritic compartmentalization. For the induction of 

synaptic plasticity, they employed the calcium-based model by Shouval et al. (2002). The PRP 

dynamic is modeled by an alpha function while PRP synthesis is triggered by the calcium 

concentration. Furthermore, the authors also included homeostatic plasticity. Using this model, 

Kastellakis et al. (2016) were able to investigate the impact of different localization paradigms 

for protein synthesis on network dynamics (cf. next subsection). They did, however, not 



reproduce experimental details of synaptic dynamics to the same extent as it was done by 

Ziegler et al. (2015) or Li et al. (2016).  

 

X.2.2 Network models with STC to describe synaptic memory consolidation 

Memory processes in the brain are mainly associated to dynamics on the level of neuronal 

networks. Thus, to understand the relation between STC and (synaptic) memory consolidation, 

STC models have been applied to both feed-forward networks (O’Donnell & Sejnowski, 2014; 

Ziegler et al., 2015; Kastellakis et al., 2016) and recurrent neuronal networks (Päpper et al., 

2011; Luboeinski & Tetzlaff, 2021, 2022; Lehr et al., 2022). This chapter shall summarize the 

pros and cons of existing models, and develop an idea of a possibly optimal future model to 

describe STC in neuronal networks. So far, several studies have already shown that neuronal 

networks featuring STC mechanisms may account for diverse cognitive effects; namely, recall 

and improvement of auto-associative memoriesr after hours (Päpper et al., 2011; Luboeinski & 

Tetzlaff, 2021), priming of such memories (Luboeinski & Tetzlaff, 2022), recency effects in free 

recall paradigms (Luboeinski & Tetzlaff, 2022), as well as selective consolidation (O’Donnell & 

Sejnowski, 2014) including behavioral tagging (Ziegler et al., 2015; Kastellakis et al., 2016) and 

retroactive modification of stored information (Lehr et al., 2022). 

O’Donnell & Sejnowski (2014) have studied the interaction of overlapping weak and strong 

memory representations in two-layer feed-forward networks. For this, they modeled the 

Schaffer collateral pathway from hippocampal region CA3 to CA1, which is related to the 

important memory features of pattern completion and pattern separation. The authors found 

that different local spots of PRP synthesis along dendrites enable selective consolidation of 

memories. More specifically, they found that the correlation or overlap between different neural 

activity patterns at the circuit level or the overlap between synaptic input patterns at the dendritic 

level enhance the rescue of a weak trace by a neighboring strong trace. In their model, they 

found that STC can lead to clustering of synapses on dendrites, and that weak inputs must 

connect to the same dendritic segments as strong inputs to benefit from the production of PRPs. 

By using models of feed-forward neuronal networks, Ziegler et al. (2015) and Kastellakis et al. 

(2016) could link STC processes to the experimentally well-studied paradigm of behavioral 

tagging. Behavioral tagging is presumed to be a behavioral analog to STC and has huge 

relevance for the behavior of animals and humans, because it describes the signaling of 

important (to be consolidated) versus unimportant (to be forgotten) memories (Moncada & Viola, 

2007; Wang et al., 2010; Moncada et al., 2015; Okuda et al., 2020). More specifically, Ziegler 

et al. (2015) considered layers of neuronal populations to describe the synaptic consolidation 

of a fear memory, in addition to their model of STC for single synapses (discussed in the 

previous subsection). They could show that their model of synaptic consolidation is able to 

account for the experimental results on behavioral tagging obtained by Moncada & Viola (2007). 



In this experiment, rats only remembered a weak electric foot shock if they made new 

experiences (related to dopamine release) closely to the time that the foot shock was applied. 

However, if the foot shock was applied at almost the same time as the novelty, it did not become 

consolidated, which is also shown by the model (Fig. 6B in Ziegler et al., 2015). While 

Kastellakis et al. (2016) considered feed-forward networks to model behavioral tagging as well, 

they essentially introduced localized PRP synthesis in somatic and dendritic compartments to 

investigate its functional role at the network level. Using this model, they could show that 

whether protein synthesis occurs somatically and/or locally at the dendrite can play a role for 

memory dynamics at the network level. However, it is important to note that all paradigms 

enable functional memory dynamics, and thus, the biological advantages of local and somatic 

protein synthesis are still not fully understood. However, Ziegler et al. (2015) and Kastellakis et 

al. (2016) only considered feed-forward networks such that their models cannot account for 

associative memory functions as enabled by cell assemblies, which we will discuss below. 

In contrast to feed-forward networks, recurrent networks allow the activity of a neuron to 

influence its own future via feedback loops. This provides the basis of complex phenomena 

such as the formation of cell assemblies, or ensembles, which are groups of recurrently coupled 

neurons that are assumed to represent memories at the network level (Hebb, 1949; Buzsáki, 

2010; Palm et al., 2014; Tonegawa et al., 2015). Exhibiting particularly strong internal synaptic 

connections, cell assemblies are able to perform tasks such as pattern completion or the replay 

of temporal structures (cf. Treves & Rolls, 1992; Buzsáki, 2010; Palm et al., 2014; Guzman et 

al., 2016). Pattern completion corresponds to auto-associative memory, meaning that a specific 

spatial firing pattern will be re-instantiated by stimulating a fraction of the neurons in the network 

that were active during learning. Complementary to that, temporal structures arise from the 

exact firing times of neurons, which can also be retained via cell assemblies (cf. Lehr et al, 

2022). Through these functional properties, cell assemblies can store information about the 

input or activity that has led to the strengthening of their synaptic connections, resembling the 

state-of-the-art concept of memory representations at the neuronal network level. 

Päpper et al. (2011) were among the first to examine STC in recurrent neuronal networks. They 

could show that STC mechanisms enable the synaptic consolidation of cell assemblies with 

respect to pattern completion. In addition, the multi-timescale dynamics of STC (e.g., early- and 

late-phase dynamics) increase the number of cell assemblies that can be stored and recalled 

in the network (i.e., the storage capacity), compared to networks with single-timescale synaptic 

plasticity. The model, however, lacks important biological features that are necessary to account 

for the induction of synaptic plasticity, as well as for PRP dynamics that are critical in STC. 

Therefore, based on the single-synapse model by Li et al. (2016), we have developed a model 

of STC in recurrent neuronal networks (Luboeinski & Tetzlaff, 2021, 2022; Lehr et al., 2022). 

Compared to the model by Ziegler et al. (2015), the model employs a simplified tag dynamic 

while considering more detailed synaptic plasticity and PRP dynamics as well as continuous 



early- and late-phase weights. After introducing the basics of our model in section X.3, in 

sections X.4 and X.5, we will provide an overview of our results indicating emergent effects that 

arise from STC in recurrent neuronal networks. 

Please note that theoretical studies have also investigated different non-STC mechanisms to 

explain multi-phase synaptic plasticity or synaptic memory consolidation (Gardner-Medwin, 

1989; Fusi et al., 2005; Elliott & Lagogiannis, 2012; Tetzlaff et al., 2013; Zenke et al., 2015; 

Elliott, 2016). Furthermore, in various types of networks, generic two- or multi-phase synaptic 

plasticity mechanisms have been shown to serve practical purposes, including the prevention 

of catastrophic forgetting (Gardner-Medwin, 1989; Fusi et al., 2005, Päpper et al., 2011, 

Kirkpatrick et al., 2017, Zenke et al., 2017). It is important to note that such mechanisms may 

be useful for complementary approaches to explain synaptic memory consolidation (also cf. 

Abraham et al., 2019; Okuda et al. 2020) and, furthermore, for technical applications. Following 

the topic of the present book, however, we will not discuss mechanisms that do not directly 

relate to STC or to biological reality. 

 

X.3 Recurrent spiking network model; simulation methods 

In this section, we introduce our network model of synaptic memory consolidation by STC, as 

well as the simulation protocols that we have used. In the first subsection X.3.1, we briefly 

explain the description of the neurons, synapses, and the structure of the neuronal network. 

After that, in subsection X.3.2, we introduce the details of our simulation protocols. Finally, in 

subsection X.3.3, we provide details on the reproduction of our results.  

 

X.3.1 Model 

To simulate the consolidation dynamics of memory representations by STC mechanisms, we 

developed a network model that comprises spiking neurons and synapses with detailed 

plasticity features. 

We first described the original version of our network model in Luboeinski & Tetzlaff (2021). For 

our investigations in Luboeinski & Tetzlaff (2022), we extended the model by introducing the 

requirement of a minimum pre- and postsynaptic firing rate for the induction of LTP. In Lehr et 

al. (2022), we added a neuromodulator dependence to the protein synthesis dynamic of the 

original model.  

In the following, we will provide a coarse overview over the most important aspects of the model, 

aiming to facilitate the experimental testing of our predictions.  

Please see our related publications (Luboeinski & Tetzlaff, 2021, 2022; Lehr et al., 2022) for 

more details, especially, for the mathematical formulation of the model. In general, we use 



differential equations to describe the change of a variable (e.g., the somatic membrane potential) 

depending on the state of other variables (e.g., sensory inputs). A neuronal network is thus 

modeled by a set of coupled differential equations. This formulation allows us to assess the 

temporal evolution of the whole system under different conditions, such as different stimulation 

protocols. Due to a high mathematical complexity we have to primarily use numerical methods, 

which requires extensive computing resources. 

 

Neuron model. To describe the dynamic of the somatic membrane potential and spiking of the 

neuron, we use the leaky integrate-and-fire model (cf. Gerstner et al., 2014). The membrane 

potential is driven by input from other neurons in the network (see below), as well as by 

additional fluctuating electrical currents that emulate input from other brain areas. The latter is 

modeled by an Ornstein-Uhlenbeck process, which has the same colored-noise power 

spectrum as the input that cortical neurons receive from a large presynaptic population 

(Destexhe et al., 2003). To model basal conditions, we applied a background current causing 

moderate firing of the neurons in our network with an average frequency of about 0.2–1.5 Hz. 

For learning and recall stimulation (cf. subsection X.3.2), we applied an additional current of 

particular strength with a specific temporal pattern. 

 

Synapse model. If two neurons are connected via a synaptic contact, we assume that all spikes 

of the presynaptic neuron elicit a postsynaptic current in the second neuron. The maximum 

amplitude of the postsynaptic current caused by a presynaptic spike defines the strength of the 

synapse, which we call “total synaptic weight”. In our model, all synaptic connections involving 

inhibitory neurons are non-plastic and remain constant. Synapses connecting two excitatory 

neurons (E→E) are plastic, following calcium-dependent, spike timing-dependent plasticity with 

an STC mechanism. The synaptic weight of these connections consists of two components: an 

early-phase weight ℎ and a late-phase weight 𝑧. The total synaptic weight 𝑤 arises from these 

weight components in the following way (cf. Li et al., 2016): 

𝑤 = ℎ + ℎ0 ⋅ 𝑧 

 

where ℎ0 is the baseline (and initial median) value of the synaptic weight which serves here as 

a normalization factor. 

The two contributions ℎ and 𝑧 constitute the core of our STC description, as described in the 

following. The early-phase weight dynamic is driven by the postsynaptic calcium concentration, 

which is increased by pre- and postsynaptic spikes, and it undergoes a decay back to its 

baseline value (Fig. 1c). The model of the calcium dynamic is based on the work by Graupner 

& Brunel (2012) and Li et al. (2016), who used parameter values obtained from fitting to 

hippocampal slice data. Please note: while those parameter values enable the reproduction of 



typical STC induction protocols (Fig. 1d-g), we added a correction for in vivo calcium 

concentrations suggested by Higgins et al. (2014) to our network simulations (Figs. 2-5). 

For very high calcium concentrations in the dendritic spine, the early-phase weight is increased 

(LTP), while moderate calcium levels lead to a decrease (LTD). Low levels of calcium 

concentration do not trigger LTP nor LTD, instead the early-phase weight relaxes back to its 

baseline value (cf. Fig. 1c-g and Fig. 2b,c,e). While the calcium-based model of the early-phase 

dynamic mainly originates from Graupner & Brunel (2012), the relaxation term was introduced 

by Li et al. (2016) to account for STC. Note that this term gives rise to a unimodal weight 

distribution, which seems biologically more realistic than a multimodal distribution (cf. Barbour 

et al., 2007; Buzsáki & Mizuseki, 2014). For the results in Figs. 2e & 5, we further imposed the 

constraint that both the pre- and postsynaptic firing rate should be above a certain threshold νth 

to induce LTP (cf. Bliss & Collingridge, 1993; Abraham et al., 2019; Luboeinski & Tetzlaff, 2022). 

If synaptic plasticity pushes the early-phase weight of a synapse above (for LTP) or below (for 

LTD) a certain threshold, we assume this synapse to be tagged. If the synapses of a neuron 

have experienced a substantial amount of early-phase weight changes, we assume this to 

trigger somatic protein production (cf. Frey & Morris, 1997; Clopath et al., 2008). Finally, if 

proteins are abundant and a synapse is tagged, the late-phase weight of that synapse is altered. 

The direction of late-phase weight change (LTP/LTD) equals that of the current early-phase 

weight change. In this way, the model describes the fast induction of synaptic plasticity via 

calcium-dependent early-phase dynamics and the slow consolidation of these changes via 

protein-dependent late-phase (STC) dynamics. The late-phase weight in our model does not 

decay, which can be considered reasonable for timescales of hours to days (Bliss & Collingridge, 

1993; Abraham et al., 2002). Please note that for simplicity, we assume that there is no protein 

production at baseline level (i.e., without plasticity). This level could be raised to take a 

continuous protein turnover into account, without significantly altering the results. 

Several experimental studies have indicated that dopamine and other neuromodulators 

facilitate the production of PRPs (Frey et al., 1990; Sajikumar & Frey, 2004; Lemon & Manahan-

Vaughan, 2006; Navakkode et al., 2007; Mather et al., 2016; Shetty et al., 2016). Thus, for the 

results shown in Figures 2c & 4, we follow Clopath et al. (2008) and consider that the protein 

synthesis threshold (defining how much plasticity is sufficient to trigger protein production) will 

depend on the concentration of an abstract neuromodulator. The abstract neuromodulator can 

represent dopamine, another relevant neuromodulator, or even a mixture of neuromodulators 

(cf. Lehr et al., 2022). 

 

Population structure. Using the neuron and synapse model explained above, we set up a 

neuronal network consisting of excitatory and inhibitory neurons as depicted in Fig. 1b. We 

used 1600 excitatory plus 400 inhibitory neurons for the results in Figs. 2bc, 3, & 4, and 2500 

excitatory plus 900 inhibitory neurons for the results in Figs. 2e & 5. The ratio of 4:1 between 

https://link.springer.com/article/10.1007/s12559-022-10021-7#Fig1


excitatory and inhibitory neurons is typical for cortical and hippocampal networks (cf. 

Braitenberg & Schüz, 1998). The probability for the existence of a synapse between two 

neurons within the network is 10%, which is a plausible approximation for hippocampal and 

neocortical networks (Sjöstrom et al., 2001; Le Duigou et al., 2014), with excitatory-to-excitatory 

synapses being plastic following the synapse model described above. In addition, to learn, 

recall, or prime a memory representation, some of the excitatory neurons received specific 

inputs (see subsection X.3.2 below). Furthermore, for our investigations on the retention of a 

temporal trace (section X.4), we considered a projection of 10% up to 100% of the excitatory 

neurons to a readout neuron. Note that mechanisms of inhibitory plasticity (cf. Vogels et al., 

2011; Nasrallah et al., 2015; Zenke et al., 2015) were not necessary to describe memory 

representations in our model, and thus, we did not include this type of plasticity here. 

Nevertheless, inhibitory plasticity may help to account for further phenomena requiring a more 

tightly balance between excitation and inhibition. 

 

X.3.2 Learning, recall, and priming stimulation 

Depending on the research aim, we let our network either learn one or three memories 

represented by cell assemblies (Fig. 2a,d; for more details on the research context please see 

sections X.4 or X.5, respectively). To form a single assembly, we employed three stimulus 

pulses, each lasting for 0.1 seconds. These pulses were delivered through increased electrical 

current (modeled by an Ornstein-Uhlenbeck process with 𝑁stim putative input neurons firing at 

frequency 𝑓learn) to the neurons that should be part of the assembly (e.g., the first 150 neurons 

for the assembly in Figs. 3 & 4 or the first 600 neurons for the assembly A in Fig. 5). The pulses 

were separated by breaks with duration of 0.4 seconds. To subsequently consolidate a memory, 

we simulated the evolution of late-phase plasticity and the decay of early-phase contributions 

for 8 hours. 

In the case of multiple memories (section X.5), learning phases were superseded by basal 

conditions (cf. subsection X.3.1) for 3.0 seconds between the last pulse of the previous and the 

first pulse of the following assembly’s learning stimulus. In the “non-overlappping” case, the 

sets of neurons corresponding to the different assemblies were completely disjunct (Fig. 5a). 

In the “overlapping” cases,  each two assemblies could share up to 10% of their neurons. This 

number is in accordance with experimental findings, where it ranges from around 1% to more 

than 40% (Sakurai et al., 1999; Cai et al., 2016; De Falco et al., 2016; Yokose et al., 2017). In 

the usual case we let consolidation occur for 8 hours only after  all assemblies had been learned. 

As opposed to this, for our “intermediate consolidation” protocol, we extended the 3.0 seconds 

breaks mentioned above to 8 hours (cf. Fig. 2d). For the additional priming of a memory 

representation (cf. Fig. 2d & Fig. 5f,g), we applied one stimulus pulse as described above to all 



neurons of one selected assembly. The priming stimulus was followed by a consolidation period 

of varied duration. 

After learning, consolidation, and possibly priming of memory representations, we had to test 

the performance of their recall (see more details in sections X.4 & X.5). For the results shown 

in Figs. 3 & 4, we applied a recall stimulus either 10 seconds or 8 hours after the end of the 

learning stimulus. The recall stimulus consisted of one stimulus pulse, lasting for 0.1 seconds, 

delivered through increased electrical current (modeled by an Ornstein-Uhlenbeck process with 

𝑁stim putative input neurons firing at frequency 𝑓recall) to half of the neurons that had received 

the learning stimulus beforehand. For the results shown in Fig. 5, we did not apply dedicated 

recall stimulation, but instead let the network run under basal conditions for 3 minutes to 

examine the spontaneous activation of the assemblies. 

 

X.3.3 Code and reproduction 

The data presented in this book chapter can be reproduced using the simulation code and 

analysis scripts that we have released previously. The full software package has been published 

under an open-source license and can be retrieved from 

https://doi.org/10.5281/zenodo.4429195. Raw and partially processed data can be found at 

https://doi.org/10.1038/s42003-021-01778-y and https://doi.org/10.5281/zenodo.6981746. 

Further data are available upon request. 

Simulating memory consolidation with our model is computationally very demanding. To 

accelerate the computation, we have used an approximation that neglects the spiking and 

calcium dynamics in periods without external stimulation. In these periods, we only compute 

the late-phase dynamic and the exponential decay of the early-phase weights. The validity of 

this approach has been demonstrated in Luboeinski (2021) by showing that a synapse 

described by our model will not undergo early-phase plasticity for neuronal firing rates below 

~3 Hz. 

In spite of the accelerated computation, each trial still runs for up to several hours on a common 

processor core. We could, fortunately, use the computing cluster of the Gesellschaft für 

wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG) which provides hundreds of 

cores. However, it is important to note that the reproduction of the entirety of our results is 

currently not feasible without such powerful computing resources. 

 

X.4 Synaptic memory consolidation enabled by STC 

The hypothesis of cell assemblies implementing associative memory representations through 

recurrent connectivity dates back to work as early as that of Hebb (1949). Meanwhile, a 

https://doi.org/10.5281/zenodo.4429195
https://doi.org/10.1038/s42003-021-01778-y
https://doi.org/10.5281/zenodo.6981746


substantial number of studies has shown that the recurrent connectivity of cortical and 

hippocampal brain regions is essential for associative brain functions such as pattern 

completion (Treves & Rolls, 1992; Martin et al., 2000; Palm et al., 2014; Guzman et al., 2016; 

cf. subsection X.2.2). Furthermore, recurrent connectivity enables attractor-like activation, 

which has been the subject of a long line of theoretical investigations on long-term memory 

(see, for example: Little, 1974; Hopfield, 1982; Amit, 1989; Kropff & Treves, 2006; Recanatesi 

et al., 2015; Gastaldi et al., 2021). 

Previous studies have already demonstrated the capability of STC to implement synaptic 

consolidation in feed-forward networks (Ziegler et al., 2015; Kastellakis et al., 2016). To 

understand the link between STC and memory functioning, however, synaptic consolidation 

should also be examined in a more general manner, considering recurrent neural networks.  

As discussed above, Päpper et al. (2011) showed that a rather abstract formalism of STC 

mechanisms can describe the consolidation of memory representations in recurrent neural 

networks. However, this simplified description of STC does not enable to quantitatively account 

for the outcome of typical STC experiments. Therefore, utilizing a more detailed STC model 

based on Li et al. (2016), we have investigated the relationship between STC and emergent 

memory dynamics in recurrent neural networks, providing quantitative predictions that can be 

tested in experiments. In this section as well as the following section we will present and discuss 

our main results (for more details see Luboeinski & Tetzlaff, 2021, 2022; Lehr et al, 2022). 

With our model at hand, we could verify the long-standing hypothesis (Martin, 2000; Redondo 

& Morris, 2011) that the mechanisms of STC enable synaptic consolidation of memory 

representations at the network level. Our first results on synaptic memory consolidation 

implemented by STC in recurrent neural networks have been published in Luboeinski & Tetzlaff 

(2021). In that study, we considered two measures to quantify pattern completion. First, an 

input-defined coefficient, which we call 𝑄, measuring the relationship between the firing rate of 

a subpopulation of the cell assembly stimulated for recall (called “as”; Fig. 3a), the firing rate of 

the subpopulation of the cell assembly not stimulated for recall (called “ans”), and another 

subpopulation consisting of the excitatory neurons that are not part of the input-defined core of 

the cell assembly (called “ctrl”). 𝑄 is expected to take any value between zero and one, where 

one indicates ideal pattern completion and zero indicates no pattern completion at all. The 

second measure is the mutual information between the firing rate distribution during learning 

and the firing rate distribution during recall. It quantifies the recall of the self-organized pattern 

of firing rates that arises across the whole population of excitatory neurons during learning.  

Now, we first want to have a look at the properties of the consolidation process implemented 

by STC with respect to the pattern completion coefficient 𝑄 (for strong stimulation of Nstim = 25 

and 𝑓stim = 100 Hz; cf. section X.3.2). In Fig. 3b, it is shown that the mean firing rates of the 

three subpopulations mentioned above (𝜈as, 𝜈ans, and 𝜈ctrl) behave differently before and after 



learning. For control, we considered a recall stimulation before learning, showing that the two 

quantities 𝜈ans  and 𝜈ctrl  are indistinguishable. This is because these two firing rates are not 

subject to specific stimulation and there is no particular weight enhancement between the 

assembly neurons yet. The firing rate 𝜈as is higher because the related neurons receive the 

(control) recall stimulation. For recall stimulation after learning, however, the firing rates 𝜈ans 

and 𝜈ctrl  differ (𝑝 < 0.006 ; cf. Luboeinski & Tetzlaff, 2021) because 𝜈ans  refers to the non-

stimulated subpopulation of the input-defined cell assembly and is thus indirectly activated by 

the stimulation of the “as” subpopulation via the strengthened connections. Hence, by 

calculating  

 

𝑄 =
𝜈ans − 𝜈ctrl

𝜈as
 

 

we can measure how efficiently the “ans” subpopulation is activated by the “as” subpopulation 

that receives the recall stimulus. We thus measure how well pattern completion or recall of an 

input-defined pattern works. Since we want to consider consolidation of the memory 

representation through STC, we have to consider the recall after several hours as compared to 

the recall before consolidation. To this end, we simulate the recall 10 seconds after learning 

(which we refer to as “10s-recall”) and 8 hours after learning (which we refer to as “8h-recall”). 

Averaging over 10 trials and computing the difference between the performance of 10s- and 

8h-recall, we find that our setup enables synaptic consolidation of memory representations (see 

Fig. 3c: 𝑄 > 0 with 𝑝 < 0.006; cf. Luboeinski & Tetzlaff, 2021). Even more, we find that the recall 

performance after consolidation by STC may be better than the recall performance before 

consolidation. Comparing 10s-recall with 8h-recall without early-phase plasticity (“no pl.”) in Fig. 

3c shows that there is already a significant “passive” improvement through the mere 

consolidation process. Comparing the outcome of usual 8h-recall to 8h-recall without early-

phase plasticity (“no pl.”) shows, however, that early-phase synaptic plasticity also causes 

significant improvement, which we termed “active” improvement. As we can see in Fig. 3d, the 

mutual information has a slightly different course but exhibits the same trend as the pattern 

completion coefficient 𝑄. Thus, we have found that STC can provide mechanisms of memory 

improvement in recurrent neural networks. This may correspond to hypermnesia effects found 

in psychological experiments (cf. Payne, 1987; Wallner & Bäuml, 2018), which may be 

investigated in more detail in future theoretical and experimental studies. Further note that in 

Luboeinski & Tetzlaff (2021), we have measured the recall performance and improvement 

across a wide regime of inhibition parameters and cell assembly sizes, proving the robustness 

of our findings. Moreover, we used an analytical approach to explore the regime of passive 

improvement as opposed to the regime of deterioration, depending on the timescales of PRP 

dynamics (Luboeinski & Tetzlaff, 2021). Taken together, our results show that the model 



presented here can naturally and robustly account for synaptic memory consolidation as well 

as memory improvement.  

We will now focus on different parameter regimes for the learning stimulation and for the protein 

synthesis threshold, which is assumed to rely on neuromodulation. Essentially, experiments 

have shown that the amount of plasticity-related proteins plays a critical role for the storing of 

memories and that it depends on neuromodulation (Frey et al., 1990; Sajikumar & Frey, 2004a; 

Lemon & Manahan-Vaughan, 2006; Navakkode et al., 2007; Wang et al., 2010; Moncada et al., 

2015; Mather et al., 2016). To consider this correlation, we introduced a monotonic relationship 

between an abstract neuromodulator and the threshold for PRP synthesis (see Clopath et al., 

2008). The neuromodulator can, for example, be thought of as dopamine, norepinephrine, or a 

mixture of multiple substances. Adopting this context, we found that in a regime of weak 

learning stimulation (Nstim = 4 input neurons at 𝑓stim = 60 Hz; cf. the parameter values given 

above), the pattern completion coefficient 𝑄  and the mutual information are influenced by 

neuromodulation in a different way (Fig. 4c,d; Lehr, Luboeinski, & Tetzlaff, 2022). This confronts 

us with the question what pattern completion actually means – and we have to accept that “it 

depends” (also cf. Buzsáki, 2010). Accordingly, we call the pattern completion defined by the 

coefficient 𝑄 “input-defined”, and the pattern completion related to the mutual information “self-

organized”. This relates to the fact that the former relies on the neuronal subpopulations defined 

by the experimenter a priori, while the latter does not. Examining synaptic memory 

consolidation in this paradigm, we found that neuromodulation during consolidation can 

retroactively control the degree to which different types of memory are maintained (Fig. 4c-e). 

To understand this, in Lehr et al. (2022), we looked deeper into the weight structure of the 

network. Specifically, we found that good recall of input-defined patterns (Fig. 4c) correlates 

with late-phase potentiation that is restricted to the core of the assembly, arising from moderate 

levels of neuromodulator concentration during consolidation (compare Fig. 4a and 4b). On the 

other hand, we found that good recall of self-organized patterns (Fig. 4d) correlates with late-

phase potentiation that constitutes outgrowth of the assembly, arising from high levels of 

neuromodulator concentration. Here, outgrowth means that neurons not stimulated during 

learning are recruited to support the assembly (see Fig. 4b). Finally, as expected, consolidation 

does not happen if the neuromodulation is too low. Next, considering these findings, we decided 

to investigate the issue of storing temporal traces as previous studies have shown that cell 

assembly outgrowth supports the learning of temporal structures (Tetzlaff et al., 2015). To 

quantify the recall performance for temporal traces, however, another measure is required. The 

measure that we chose is the determination coefficient R2 which quantifies the goodness of a 

linear regression fit on a temporal trace (for more details, see Lehr et al., 2022). Computing the 

determination coefficient  R2  for randomly generated traces, we found that as expected, 

enhanced recall of self-organized patterns goes along with better recall of temporal traces (Fig. 



4d,e), while enhanced recall of input-defined patterns correlates with poorer recall of temporal 

traces (Fig. 4c,e). Importantly, we also found that the stored temporal information critically relies 

on the specific spike times in the network, which indicates that a model with spiking dynamics 

is necessary to account for the storing and recall of temporal traces (see Lehr et al., 2022).  

The findings on the recall of temporal traces complement our findings on the recall of spatial 

patterns (input-defined and self-organized), demonstrating that STC enables the synaptic 

consolidation of memory representations in recurrent neural networks for different types of 

information. In summary, we have seen that neuromodulation can control the network to 

retroactively alter the quality of different types of memory (cf. Fig. 4c-e): low neuromodulator 

concentration prevents consolidation, moderate neuromodulator concentration enables good 

recall of input-defined patterns, and high neuromodulator concentration enables good recall of 

self-organized patterns and temporal traces from long-term memory. 

Finally, the timing of neuromodulation plays an important role, as the synaptic tag introduces a 

time window for late-phase plasticity dynamics such that it can abruptly disable any 

consolidation beyond a certain point in time. Thus, as shown in Fig. 4f-i, neuromodulation only 

takes effect if it occurs closely enough to the learning stimulus that has implemented the 

synaptic tag. We found that the mutual information is highest if neuromodulation has its onset 

at the same time as the learning stimulus. However, the peak for the pattern completion 

coefficient 𝑄 does not occur at the time of learning but around 60 to 90 minutes later. This 

resembles, interestingly, the findings of behavioral tagging experiments (cf. Moncada et al., 

2015; also see Ziegler et al., 2015).  

In this section, we have shown how consolidation, improvement, and retroactive modification 

of memory representations can be described by our network model with STC mechanisms. 

Beyond this, we will consider cognitive functions related to the interaction between multiple 

memory representations in the next section X.5. 

 

X.5 Influence of STC on the interaction between memories 

In addition to the timescale of early-phase long-term plasticity, STC introduces further 

timescales to the dynamics of synapses and, by this, to a whole neural network. Therefore, it 

seems reasonable that beyond the transfer of a single memory representation to a long-lasting 

state (which we have discussed in the previous section X.4), STC should also have a functional 

impact on the interaction of multiple memory representations stored in a network. Indeed, we 

could show that the recency effect in free recall paradigms as well as the direct positive priming 

of a memory representation may depend on STC mechanisms (Luboeinski & Tetzlaff, 2022). In 

addition to that, as already discussed in section X.2.2, others have provided theoretical 



accounts for behavioral tagging with STC-guided feed-forward network dynamics (Ziegler et al., 

2015; Kastellakis et al., 2016). 

Since the interaction between memory representations is a critical aspect of any powerful 

memory system or schema (cf. Preston & Eichenbaum, 2013; Cooper, 2016), and STC has 

been shown to account for synaptic memory consolidation (see section X.4), it seems obvious 

that STC could impact cognitive functionality by influencing the interaction of memory 

representations. We investigated such aspects considering the interaction, specifically the 

organization and priming, of memory representations on the timescales of STC (i.e., minutes 

to hours; see Luboeinski & Tetzlaff, 2022). To obtain generalized results, we picked several 

paradigms of three memory representations (Fig. 5a): 1. no overlap between the neuronal 

representations, 2. equal overlap between all three neuronal representations, and 3. hub-like 

overlap (for example, assemblies A & B overlap with each other and assemblies B & C overlap 

with each other, but assemblies A & C do not overlap). In contrast to the investigations that we 

presented in the previous section X.4, here, we do not consider pattern completion. Instead, 

we consider the spontaneous reactivation of the memory representations through background 

activity after learning and consolidation, quantified via the concept of neuronal avalanches 

(Plenz & Thiagarajan, 2007; Tetzlaff et al., 2010; Priesemann et al., 2014). Specifically, we 

measured the spiking activity of the network for 3 minutes. To determine the occurrence of 

avalanches in the individual assemblies, we counted the number of spikes generated by the 

neurons of each assembly within a time frame of 10 ms. If at least 10 spikes had occurred, we 

considered an assembly active (note that theoretically, multiple assemblies could be active at 

the same time). 

Importantly, we found that LTD plays an important role in organizing memory representations 

such that more recently learned memories attenuate the previously learned ones and are 

thence reactivated with higher probability (Fig. 5b,c; see Luboeinski & Tetzlaff, 2022, for control 

cases). This retroactive interference can relate to the recency effect found in free recall 

experiments, which is a paradigm where a subject has to recall a list of items that had to be 

learned some time before (Bjork & Whitten, 1974; Sederberg et al., 2010; de Almeida Valverde 

Zanini et al., 2012). To investigate the influence of STC on this effect, we considered two 

different protocols (cf. methods in section X.2.2). Our “standard” protocol comprises learning 

one assembly after the other with breaks of several seconds in between, followed by 

consolidation for 8 hours (Fig. 2d, top panel). This “standard” protocol closely resembles the 

experimental free recall protocol where the items of the list are first learned quickly one after 

the other, and then recalled either immediately or several hours afterwards, usually showing a 

strongly pronounced recency effect (Bjork & Whitten, 1974; Greene, 1986; Davelaar et al., 2005; 

de Almeida Valverde Zanini et al., 2012). The other protocol was an “intermediate consolidation” 

protocol, where we learned an assembly, let it consolidate for 8 hours, then learned the next 

assembly, let it consolidate, and then did the same with the third assembly (Fig. 2d, center 



panel). The conditions for the formation of memory representations, i.e., for processes of E-

LTP and E-LTD, were similar for both protocols. Through STC-based consolidation, however, 

the two protocols led to very different outcomes (see Fig. 5b-e). Specifically, we found that 

networks stimulated with the “intermediate consolidation” protocol can exhibit much higher 

assembly reactivation and at the same time a less pronounced recency effect, compared to 

networks stimulated with the “standard” protocol. This seems to be caused by STC-guided 

consolidation processes preventing induced E-LTD at the synapses between the assemblies to 

be transferred to the late phase (compare Fig. 5c and Fig. 5e). Taken together, our results 

indicate that STC-dependent consolidation can have a critical impact on the interaction of 

multiple memory representations. In particular, we have made predictions for paradigms of 

retroactive interference and free recall, which can be tested experimentally (cf. Lohnas et al., 

2015; de Almeida Valverde Zanini et al., 2012; Autore et al., 2023). Our theoretical results 

predict, inter alia, that the recency effect is weakened by intermediate consolidation.  

In the following, we will briefly discuss the different properties that we found for the different 

overlap paradigms of the memory representations mentioned above (cf. Fig. 5a). In particular, 

the recency effect is most pronounced in the “overlapping” paradigm (Fig. 5b,d). This effect is, 

however, countered by hub-like overlap (where one possible overlap between two assemblies 

is not present; Fig. 5b,d). Significantly, the recency effect is less pronounced in both the “non-

overlapping” and the “overlapping” paradigm for the “intermediate consolidation” protocol, when 

compared to the “standard” protocol (as previously stated). Therefore, STC may not only 

mitigate the effects of the learning order but also mitigate the effects of overlap between 

memory representations.  

Besides our findings on the possible role of STC in the recency effect, we could show another 

important functional implication of STC in recurrent neural networks – the direct positive priming 

of a memory representation. Direct priming denotes a set of psychological phenomena which 

typically entail the enhanced recall of a certain memory following its brief reactivation by a 

“priming stimulus” (cf. Janiszewski & Wyer, 2014; Bermeitinger, 2015; Elgendi et al., 2018).  In 

our study, we could show that a brief stimulus to one of the three previously learned assemblies 

(Fig. 2d, bottom panel) will significantly enhance the likelihood of spontaneous reactivation of 

that assembly. The enhanced activation of the assembly is expressed immediately after the 

priming stimulation and vanishes after several hours (Fig. 5f,g). This behavior is enabled by the 

interplay between the early- and late-phase synaptic weight in our model. While the long-term 

memories are stored in the late-phase weights, the memory-specific information of the priming 

stimulus is encoded by increased early-phase weights of the related cell assembly (B in the 

example shown in Fig. 5g). The increased early-phase weights result in a higher reactivation 

probability. Thus, employing STC, we could provide a mechanistic theoretical model for direct 

positive priming on timescales of minutes to hours, which has not been available so far (cf. 

Bermeitinger, 2015; Elgendi et al., 2018). Note that interestingly, the mechanism that we 



propose for priming is related to the active improvement of memory recall after consolidation 

which we have discussed in the previous section X.4. 

In conclusion, we have seen that STC can give rise to various emergent memory dynamics on 

the network level. Nevertheless, many further possible functional implications of STC may be 

investigated in future studies, some of them with low effort, starting from our previous 

investigations. Such could be, for example, negative priming, semantic priming, primacy, or 

behavioral tagging.  

In the next section X.6, we will discuss a possible synthesis of previous theoretical models with 

our model, and we will consider which dynamics could be investigated using a new integrated 

model. 

 

X.6 Future perspectives 

In this section we focus on discussing how our model of recurrent neural networks with STC 

can be extended to further elucidate the link between molecular mechanisms, network effects, 

and cognitive phenomena. As we have already seen in sections X.2 and X.3, all existing models 

of STC and synaptic consolidation have their paramount features and their shortcomings. 

Therefore, a promising goal could be the integration of parts of other STC models into our 

recurrent network model. Furthermore, apart from STC, one might also want to introduce a 

biologically more realistic description for certain other components of our model. 

 

X.6.1 Molecular details of late-phase plasticity 

The synaptic tag has been related to structural changes at the postsynaptic site and it has been 

proposed that actin, besides enzyme activity, plays a crucial role for its dynamics (Redondo & 

Morris, 2011; Pinho et al., 2020). Thus, a future model of the synaptic tag could be based on 

previous studies of actin dynamics (e.g., Bonilla-Quintana et al., 2021; Bonilla-Quintana & 

Wörgötter, 2021), and the volume of the dendritic spine, related to the postsynaptic density, 

may account for late-phase changes in synaptic strength. Eventually, such a molecular model 

might replace the simplified description of STC in the network model that we have presented 

here, and might thereby enable better comparability with experimental results at the molecular 

level. 

Experiments have shown that the synaptic tag can be reset via depotentiation (Sajikumar & 

Frey, 2004b), suggesting a strong link between early-phase synaptic plasticity and the tag. 

However, with respect to possible modifications of our model, we have to note that tag setting 

can also be blocked by CaMKII- and actin-inhibiting drugs and that early-phase plasticity can 

be expressed despite this blocking (cf. Redondo & Morris, 2011). Thus, it seems that the 



mechanisms of early-phase plasticity and tagging are partially disentangled (cf. Redondo & 

Morris, 2011; Okuda et al., 2020). Similar to the models by Clopath et al. (2008) and Barrett et 

al. (2009), however, our model does not account for such dissociation of early-phase plasticity 

and the tag. Ziegler et al. (2015) have solved this issue by employing a tag dynamic that does 

not exclusively depend on early-phase plasticity. Thus, it may be beneficial to incorporate a tag 

dynamic similar to the one proposed by Ziegler et al. (2015) into our model. Modeling a partial 

dissociation between early-phase plasticity and synaptic tag could, in addition, account for slow-

onset potentiation (cf. Ziegler et al., 2015).  

Considering the neuromodulator dependence of synaptic plasticity, many open questions 

remain. Here, we have assumed an abstract neuromodulator to capture neuromodulatory 

influences on the synthesis of PRPs and, thereby, on memory consolidation (cf. Lehr et al., 

2022). This will hopefully serve to shed more light on the role of STC in solving the distal reward 

problem (also cf. Eichenbaum, 2011; Päpper et al., 2011; Brzosko et al., 2017). Nevertheless, 

there are many possible mechanisms of action through which neuromodulators might exert 

their influence on synaptic plasticity and memory dynamics (cf. Frey et al., 1990; Otmakhova & 

Lisman, 1996; Sajikumar & Frey, 2004a; Lindskog et al., 2006; Lemon & Manahan-Vaughan, 

2006; Navakkode et al., 2007; Wang et al., 2010; Pezze & Bast, 2012; Navakkode, 2015). 

Extending our model by more neuromodulatory mechanisms could serve to further elucidate 

the functional roles of STC and neuromodulation for long-term memory.  

 

X.6.2 Compartmentalization of protein synthesis 

Although there is evidence that STC may have a spatially limited action radius in dendrites 

(Sajikumar et al., 2007; Govindarajan et al., 2011, Fonkeu et al., 2019), the impact of local 

protein synthesis has not been targeted in this chapter. Instead, most models discussed here 

assume centralized protein synthesis in the soma (also cf. Abraham et al., 2002; Dudai, 2004; 

Redondo & Morris, 2011). This is reasonable because transcription in the soma is critical for 

long-lasting plasticity (Bliss & Collingridge, 1993; Abraham et al., 2019) and strict limitation of 

protein capture only seems indicated for STC interactions between apical and basal dendrites 

(Alarcon et al., 2006; Sajikumar et al., 2007). Thus, a critical constraint for STC might be that 

the involved synapses should just not be located in far distant parts of the neuron. Furthermore, 

there are indications that clustering of synapses with similar response characteristics can 

provide a situation in which local protein synthesis yields the same results as somatic protein 

synthesis (cf. Kastellakis & Poirazi, 2019; Pinho et al., 2020). Nevertheless, experiments have 

found that synthesis of PRPs does not only occur in the soma but also in dendrites (Martin et 

al., 1997; Glock et al., 2017), and theoretical studies have found that such local protein 

synthesis may affect the functional implications of STC (O’Donnell & Sejnowski, 2014; 

Kastellakis et al., 2016). So what would be an optimal solution for a future model? As late-phase 



plasticity does not only depend on the translation of existent mRNA molecules to produce PRPs 

but also on the transcription in the nucleus to produce mRNA, and there even seem to be 

mechanisms that enable quick release of mRNA from the nucleus (cf. Mauger et al., 2016), a 

purely local (dendritic) model of protein synthesis would not be satisfying either. Thus, a 

combination between somatic and dendritic processes as considered by Kastellakis et al. (2016) 

could provide an ideal solution. 

Previous studies have demonstrated that synapses do not only cooperate to trigger protein 

synthesis (Okuda et al. 2020), but they can also compete for proteins (Fonseca, 2015). This is 

guided by spatial compartmentalization and can even happen in a winner-take-all fashion (Kano 

& Hashimoto, 2009; Sajikumar et al., 2014; Shetty et al. 2016). While our present model does 

not directly account for such competition dynamics, they may be introduced by replacing our 

phenomenological description of a rising and decreasing protein amount by a description of 

actual production and consumption of proteins. This could enable the discovery of further 

functional effects of STC at the network level. 

Finally, while we have assumed one common pool of PRPs in our description here, it has been 

shown that additional PRPs specific to potentiation and depression exist (Sajikumar et al., 2005, 

2007; Okuda et al., 2020). The exact compounds that constitute PRPs as well as their 

interactions still remain largely elusive (Okuda et al., 2020, Bin Ibrahim et al., 2021). From a 

theoretical perspective, the existence of further PRP pools might lead to further functional 

effects of STC at the network level. Therefore, it would make sense to extend our model by 

potentiation- and depression-specific PRP pools to investigate their functional consequences, 

irrespective of their particular molecular identity. Our published simulation code (see section 

X.3.3) has already been prepared for this. 

 

X.6.4 Calcium and neuromodulator dependence of early-phase plasticity 

To describe the induction of long-term synaptic plasticity, Ziegler et al. (2015) used Triplet-STDP 

(cf. Pfister & Gerstner, 2006), which is different to calcium-based models (cf. Shouval et al., 

2002; Graupner & Brunel, 2012; Higgins et al., 2014). The calcium model that we have 

employed originates from the model by Graupner & Brunel (2012), which has superseded the 

earlier model by Shouval et al. (2002). As mentioned in section X.3.1, our calcium model has 

been modified as suggested by Higgins et al. (2014) to account for in vivo conditions, and as 

suggested by Li et al. (2016) to exhibit single fixed-point dynamics instead of bistable dynamics. 

The resulting model seems to be a very useful candidate to describe biologically plausible 

calcium-based early-phase dynamics in conjunction with STC (cf. Li et al., 2016; Luboeinski & 

Tetzlaff, 2021). However, future research should examine if other calcium models as proposed 

by Hiratani & Fukai (2017), Inglebert et al. (2020), or Ding et al. (2022) can contribute to further 

improve our model. 

https://doi.org/10.5281/zenodo.4429195
https://doi.org/10.5281/zenodo.4429195


X.6.3 Model of neurons and synaptic transmission 

LIF neurons are well suited to simulate large neural networks related to memory function 

because they are computationally well tractable (Izhikevich, 2004), capable of reproducing the 

frequency response of populations of neocortical pyramidal neurons (Tchumatchenko et al., 

2011), and reproducing the spiking behavior of fast-spiking cortical interneurons (Jolivet et al., 

2004; Yamauchi et al., 2011). There are also indications that current-based synapses, as we 

have used them here, constitute a reasonable approximation for our demonstration of general 

functional properties (Cavallari et al., 2014; Kiselev et al., 2020). Nevertheless, for the 

description of neurons and synapses, Ziegler et al. (2015) used in their network model the 

adaptive integrate-and-fire model (AIF) along with conductance-based synapses (cf. Gerstner 

et al., 2014), which may be more suitable than our approach. An even more realistic neuron 

model may be the multi-adaptive threshold model (MAT2) model, which has been shown to 

directly reproduce a wide variety of dynamics of excitatory neurons (Kobayashi et al., 2009; 

Yamauchi et al., 2010). This model has been employed in the STC model by Li et al. (2016). 

Hence, although it will come at the cost of computational tractability, it seems reasonable to set 

up future network models of STC with conductance-based synapses and MAT2 excitatory 

neurons, while the LIF model could continue to be used for inhibitory neurons. 

 

X.6.5 Attractor dynamics and switching between memories 

A particular feature enabled by recurrent connectivity is attractor-like activity. This occurs when 

a stimulus activates a cell assembly which subsequently stays active for a certain period of time 

(it thereby constitutes a metastable attractor of the network dynamics). In the studies discussed 

in this chapter, we have investigated the transient activation of cell assemblies for several tens 

of milliseconds. Nevertheless, many theoretical studies of neural networks have been focusing 

on attractor dynamics with longer activation periods (Hopfield, 1982; Amit, 1989; Kropff & 

Treves, 2006; Recanatesi et al., 2015). Preliminary results on prolonged attractor activation of 

cell assemblies and their overlaps for a model similar to the one presented here have been 

presented in Luboeinski (2021). Those results may be useful to adjust our model to reproduce 

data of free recall experiments (Lohnas et al., 2015; de Almeida Valverde Zanini et al., 2012), 

analogous to Recanatesi et al. (2015), while further guidance for tuning spike-timing-dependent 

plasticity processes to obtain attractor dynamics may come from Zenke et al. (2015). The 

approach by Recanatesi et al. (2015) was to demonstrate that oscillating inhibition can cause 

the activation of memory representations, as well as the switching between active 

representations. Following this, they could match the activation probabilities of the different 

memory representations to data from free recall experiments.    

 



X.7 Conclusion 

In this chapter, we have shown that current models of STC can readily account for a variety of 

functionally relevant memory dynamics at the network level, thereby providing mechanisms that 

may explain initial memory consolidation as well as memory improvement, recency, and priming. 

In other words, mathematical models have helped us link the synaptic or even molecular 

dynamics underlying STC with memory dynamics occurring on the level of neuronal networks. 

We should note that in principle there may be other mechanisms besides STC that give rise to 

the mentioned functions (also cf. Abraham et al., 2019; Okuda et al. 2020). However, the 

discovery of STC has led to a leap forward in consolidation research, where plasticity 

mechanisms featuring multiple timescales have subsequently become a major focus (cf. Martin 

et al., 2000; Dudai, 2004; Redondo & Morris, 2010). The great use of multi-timescale plasticity 

mechanisms including STC lies in their capability to link the dynamics of transient and long-

lasting synaptic modifications. By this, as shown in this chapter, STC-like mechanisms may be 

indispensable in particular for the enhancement of memory recall, for priming on timescales of 

minutes to hours, as well as for the modulation of stored information during different 

consolidation processes. Thus,  theoretical findings provide many pieces of evidence 

supporting that STC plays a major role in a multitude of memory functions. In the future, 

dedicated investigation of mechanisms like cross-tagging can enable further insights into the 

functional benefits of STC. Moreover, new findings on the molecular underpinnings of STC, and 

possibly also behavioral experiments, will enable to develop more detailed models to further 

elucidate the dependence of memory consolidation and other cognitive functions on STC. As 

we have discussed here, the synthesis of existing mathematical models (in particular Ziegler et 

al., 2015; Kastellakis et al., 2016; Luboeinski & Tetzlaff, 2021) may yield a very promising 

theoretical description of the mechanisms and effects elicited by STC in recurrent neural 

networks. An integrated model may eventually enable more detailed mechanistic predictions 

for a variety of cognitive functions. 
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Figure 1: 

Synapse and network model and response to typical protocols for eliciting early- and 

late-phase plasticity at a single synapse. (a) Schematic of the synaptic model which 

integrates calcium- and firing-rate-dependent early-phase plasticity as well as late-phase 

plasticity described by neuromodulator-dependent STC. (b) Schematic of a recurrent neural 

network that consists of excitatory neurons (light blue, dark blue, and green disks) and inhibitory 

neurons (red disks), receiving external input from other brain areas. Synapses between 

excitatory neurons are subject to plasticity as shown in (a). Memories are represented by 

Hebbian cell assemblies consisting of groups of strongly interconnected neurons (shaded 

areas). The assemblies may overlap by a fraction of their neurons (dark green disks). (c) Basic 

early-phase synaptic and neuronal dynamics. Stimulating spikes reach the postsynaptic neuron 

at pre-defined times (indicated by bold gray arrows). Top panel: postsynaptic calcium amount, 

successively crossing the thresholds for long-term depression (LTD) and long-term potentiation 

(LTP), and dynamics of the early-phase synaptic weight. Bottom panel: membrane potential of 



the postsynaptic neuron. (d-g) Different types of synaptic plasticity elicited by typical 

experimental protocols (as, e.g., in Sajikumar & Frey, 2004b, 2005). (d) late-phase potentiation, 

(e) early-phase potentiation, (f) late-phase depression, and (g) early-phase depression. Late-

phase weight (blue line, shifted for graphical reasons) is only changed by strong stimulation 

(STET, SLFS). Early-phase weight (red line) is also affected by weak stimulation protocols 

(WTET, WLFS). While these suffice to drive the early-phase weight across the threshold of tag 

formation (𝜃tag, dashed red line), the threshold of triggering protein synthesis (𝜃𝑝𝑟𝑜, dashed 

green line) is not reached. The total weight (the synaptic efficacy) is the sum of early- and late-

phase weight (orange line). The data are reproduced from Luboeinski & Tetzlaff, 2021 (average 

over 100 trials; error bands showing the standard deviation). 

 

 

 

 

 

 

 

 



 

Figure 2: 

Important simulation protocols and time courses of the synaptic weight in a recurrent 

network. (a) Protocols to produce and test short- and long-term memory representations with 

our model. (b) Mean synaptic weight in a cell assembly core of 150 neurons, resulting from the 

protocols in (a) with 𝑁stim = 25 , 𝑓learn = 𝑓recall = 100 Hz  (data reproduced from Luboeinski & 

Tetzlaff, 2021). Importantly, both learning and recall have an influence on the synaptic weight. 

(c) Mean synaptic weight in a cell assembly core of 150 neurons, resulting from the protocol in 

(a) with 𝑁stim = 4, 𝑓learn = 60 Hz, and 𝑓recall = 100 Hz (data reproduced from Lehr et al., 2022). 

The amount of an abstract neuromodulator regulates the amount of plasticity-related protein 

(PRP) and thereby influences consolidation. (d) Protocols to learn and consolidate multiple 

memory representations before measuring their spontaneous reactivation (also see Fig. 5). For 

the priming protocol, additional interleaved learning steps are not shown (cf. Luboeinski & 

Tetzlaff, 2022). (e) Mean synaptic weight in the core of cell assembly A with 600 neurons, 

resulting from the standard organization protocol in (d) with 𝑁stim = 25, 𝑓learn = 𝑓recall = 100 Hz, 

and νth = 40 Hz  (data reproduced from Luboeinski & Tetzlaff, 2022). Learning new memory 

representations causes depression of the previous. The green shaded areas indicate the 
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average lifetime of the synaptic tag. The error bands indicate the standard deviation (mostly too 

small to be visible). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 3: 

Firing rates and recall of a memory representation. (a) Schematic of the three 

subpopulations during recall stimulation: the fraction of externally stimulated cell assembly 

neurons (“as”), the fraction of cell assembly neurons that are not stimulated (“ans”), and the 

remaining excitatory neurons that act as control group (“ctrl”). (b) Mean firing rates of the three 

subpopulations shown in (a): without specific stimulation before learning (“standby”), with 

control recall stimulation before learning, with recall stimulation 10 s after learning, and with 

recall stimulation 8 h after learning. The assembly core consisted of 150 neurons. (c) Recall 

performance 10 s and 8 h after learning, measured by pattern completion coefficient 𝑄. Recall 

was considered in the presence and in the absence of early-phase plasticity (“no pl.”). The 

assembly core consisted of 350 neurons. (d) As in (c), but recall performance measured by 

mutual information. The data are reproduced from Luboeinski & Tetzlaff, 2021 (average over 

10 trials; error bars showing the standard deviation). 
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Figure 4: 

Impact of neuromodulator-regulated protein synthesis on synaptic weight and memory 

recall. 

(a) Mean weight of the synapses within the cell assembly core, 10 seconds and 8 hours after 

learning. (b) Mean weight of the outgoing synapses from the cell assembly core to the rest of 

the excitatory population, 10 s and 8 h after learning. (c-e) Recall performance 10 seconds and 

8 hours after learning, (c) measured by pattern completion coefficient 𝑄 , (d) measured by 

mutual information, (e) measured by the goodness of a linear regression fit to a random 

temporal trace. (f-i) Recall performance after 8 hours with neuromodulation lasting for either 30 

or 60 minutes: (f) Weak neuromodulation, recall measured by pattern completion coefficient 𝑄; 

(g) strong neuromodulation, recall measured by pattern completion coefficient 𝑄 ; (h) weak 

neuromodulation, recall measured by mutual information; (g) strong neuromodulation, recall 

measured by mutual information. In (a-e), neuromodulation lasted for the whole duration of the 

simulation. All data are reproduced from Lehr et al., 2022 (assembly core consisting of 150 

neurons; average over 50 networks; error bars show the 95% confidence interval). 
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Figure 5: 

Organi ation and priming of memory representations with STC. (a) Organizational 

paradigms of three cell assemblies with different overlap relationships. Pictures show possible 

real-life examples (adapted from pixabay.com). (b,d) Overview of the likelihood of avalanches 

in the different organizational paradigms, learned and consolidated following (b) the standard 

protocol (cf. Fig. 1d), (d) the intermediate consolidation protocol (cf. Fig. 1d). Braces and 

plus/minus signs in (b) indicate differences to the “Overlap 10%” paradigm. (c,e) Abstract 

matrices showing the mean consolidated weights within and between all subpopulations of the 

excitatory population for the “No overlap” case; (c) with standard protocol; (e) with intermediate 
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consolidation protocol. (f,g) Priming of cell assembly B. The learning proceeded similar to the 

standard protocol but comprised additional steps for interleaved learning, followed by 

consolidation and a priming stimulus (cf. Fig. 1d and Luboeinski & Tetzlaff, 2022). Results in (f) 

were obtained 10 minutes after the priming stimulus. (g) shows the time course of the transiently 

elevated synaptic weight and activation of assembly B for the “No overlap” case. All data are 

reproduced from Luboeinski & Tetzlaff, 2022 (assembly core consisting of 600 neurons; 

average over ten networks; error bars showing the 95% confidence interval). 

 

 

 


